# Organic Chemistry Prep Workshop – Day 1

#### **Atomic Structure**



|          | Mass | Relative Charge | Symbol |
|----------|------|-----------------|--------|
| Proton   |      |                 |        |
| Neutron  |      |                 |        |
| Electron |      |                 |        |

Atomic Number (Z) = Number of protons Mass Number = Number of protons + neutrons Atomic Weight = Weighted average of the isotopes present in nature.





|                                                                                   | You Try 1-1    |   |    |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------|---|----|--|--|--|--|
| For each species below, determine the number of protons, neutrons, and electrons. |                |   |    |  |  |  |  |
| <sup>15</sup> N                                                                   | p <sup>+</sup> | e | n° |  |  |  |  |
| <sup>32</sup> S <sup>2-</sup>                                                     | p+             | e | n° |  |  |  |  |
| <sup>39</sup> K <sup>+</sup>                                                      | p+             | e | n° |  |  |  |  |
| <sup>21</sup> Ne                                                                  | p+             | e | n° |  |  |  |  |



# Electrons

The outermost electron shell (valence shell) is responsible for bonding. The inner shell (core shell) does not participate in bonding.



| You Try 1-2                                                             |                 |  |  |  |  |  |  |
|-------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|
| Write the abbreviated electron configuration for each of the following: |                 |  |  |  |  |  |  |
| Na                                                                      | S               |  |  |  |  |  |  |
| Na⁺                                                                     | S <sup>2-</sup> |  |  |  |  |  |  |
| c                                                                       |                 |  |  |  |  |  |  |

#### **Ionic Bonds**

Octet Rule - An atom will donate, accept, or share electrons in order to obtain a filled outer shell.

**Ionic bonds** involve the transfer of electrons typically between a metal and a non-metal.

Example: LiBr

# Hydrogen – An Exception to the Octet Rule

A stable configuration for hydrogen has either zero or two valence electrons.





### **Covalent Bonds**

A covalent Bond results from two atoms sharing electrons.

Covalent bonds occur between elements of similar electronegativity and typically involve two non-metals.

#### Examples:



# Electronegativity

| Des                       | cribe                           | es th                 | ne te                       | nde                            | ncy                          | of a                        | n ate                      | om t                      | to at                          | trac                        | t ele                      | ectro                         | ons t                       | towa                          | ards                                  | itse                        | lf.                       |                                     |
|---------------------------|---------------------------------|-----------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------|---------------------------|--------------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|-------------------------------|---------------------------------------|-----------------------------|---------------------------|-------------------------------------|
| hydrogen<br>1<br>H        |                                 |                       |                             |                                |                              |                             |                            |                           |                                |                             |                            |                               |                             |                               |                                       |                             |                           | 2<br>He                             |
| ithium<br>3               | <sup>4</sup><br>Be              |                       |                             |                                |                              |                             |                            |                           |                                |                             |                            |                               | 5<br>B                      | 6<br>C                        | nitrogen<br>7<br><b>N</b>             | oxygen<br>8<br>0            | fluorine<br>9<br><b>F</b> | 10<br>Ne                            |
| 6.941<br>sodium<br>11     | 9.0122<br>magnesium<br>12<br>Ma |                       |                             |                                |                              |                             |                            |                           |                                |                             |                            |                               | 10.811<br>aluminium<br>13   | 12.011<br>silicon<br>14<br>Ci | 14.007<br>phosphorus<br>15<br>D       | 15.999<br>sulfur<br>16<br>C | chlorine<br>17            | 20.180<br>argon<br>18<br><b>A r</b> |
| 22.990<br>potassium<br>19 | 24.305<br>caldum<br>20          |                       | scandium<br>21              | titanium<br>22                 | vanadium<br>23               | chromium<br>24              | manganese<br>25            | iron<br>26                | cobalt<br>27                   | nickel<br>28                | copper<br>29               | zinc<br>30                    | 26.982<br>gallium<br>31     | 28.086<br>germanium<br>32     | 30.974<br>arsenic<br>33               | 32.065<br>selenium<br>34    | 35.453<br>bromine<br>35   | 39.948<br>krypton<br>36             |
| K<br>39.098<br>rubidium   | Ca<br>40.078<br>strontium       |                       | Sc<br>44.956<br>yttrium     | 47.867<br>zirconium            | 50.942<br>niobium            | Cr<br>51.996<br>molybdenum  | Mn<br>54.938<br>technetium | Fe<br>55.845<br>ruthenium | <b>Co</b><br>58.933<br>rhodium | Ni<br>58.693<br>palladium   | Cu<br>63.546<br>silver     | <b>Zn</b><br>65.39<br>cadmium | Ga<br>69.723<br>Indium      | Ge<br>72.61                   | As<br>74.922<br>antimony              | Se<br>78.96<br>tellurium    | Br<br>79.904<br>Iodine    | Kr<br>83.80<br>xenon                |
| 37<br>Rb<br>85.468        | 38<br>Sr<br>87.62               |                       | 39<br>Y<br>88.906           | 40<br><b>Zr</b><br>91.224      | 41<br>Nb<br>92.906           | 42<br>Mo<br>95.94           |                            | 44<br>Ru                  | 45<br><b>Rh</b><br>102.91      | 46<br>Pd<br>106.42          | 47<br>Ag                   | 48<br>Cd                      | 49<br>In<br>114.82          | 50<br>Sn<br>118.71            | 51<br>Sb<br>121.76                    | 52<br>Te<br>127.60          | 53<br>126.90              | 54<br>Xe                            |
| 55<br>Cs                  | Ba                              | 57-70<br><del>×</del> | T1<br>Lu                    | <sup>hafnium</sup><br>72<br>Hf | Tantalum<br>73               | 74<br>W                     | 75<br>Re                   | <sup>osmium</sup><br>76   | 77<br>Ir                       | 78<br>Pt                    | 79<br>Au                   | 80<br>Hg                      | 81<br>TI                    | Pb                            | <sup>bismuth</sup><br>83<br><b>Bi</b> | 84<br>Po                    | 85<br>At                  | <sup>radon</sup><br>86<br><b>Rn</b> |
| 132.91<br>francium<br>87  | 137.33<br>radium<br>88          | 89-102                | 174.97<br>lawrencium<br>103 | 178.49<br>rutherfordium<br>104 | 180.95<br>dubnium<br>105     | 183.84<br>seaborgium<br>106 | 186.21<br>bohrium<br>107   | 190.23<br>hassium<br>108  | 192.22<br>meitnerium<br>109    | 195.08<br>ununnillum<br>110 | 196.97<br>unununium<br>111 | 200.59<br>ununbium<br>112     | 204.38                      | 207.2<br>ununquadium<br>114   | 208.98                                | [209]                       | [210]                     | [222]                               |
| [223]                     | <b>Ra</b><br>[226]              | * *                   | [262]                       | [261]                          | [262]                        | 3 <b>G</b><br>[266]         | BN<br>[264]                | ПS<br>[269]               | 1VI L<br>[268]                 | [271]                       | UUU<br>[272]               | [277]                         |                             | Uuq<br>[289]                  |                                       |                             |                           |                                     |
| *Lonti                    | hanida                          | eariae                | lanthanum<br>57             | cerium<br>58                   | praseodymiun<br>59           | neodymium<br>60             | promethium<br>61           | samarium<br>62            | europium<br>63                 | gadolinium<br>64            | terblum<br>65              | dysprosium<br>66              | holmium<br>67               | erblum<br>68                  | thulium<br>69                         | ytterblum<br>70             |                           |                                     |
| Laill                     | ande                            | 361163                | La<br>138.91<br>actinium    | Ce<br>140.12<br>thorium        | Pr<br>140.91<br>protactinium | Nd<br>144.24<br>uranium     | Pm<br>[145]<br>neptunium   | Sm<br>150.36<br>plutonium | Eu<br>151,96<br>americium      | Gd<br>157.25<br>curium      | Tb<br>158.93<br>berkelium  | Dy<br>162.50<br>californium   | Ho<br>164.93<br>einsteinium | Er<br>167.26<br>fermium       | Tm<br>168.93<br>mendelevium           | 173.04<br>nobelium          |                           |                                     |
| * * Act                   | inide s                         | eries                 | 89<br>Ac                    | 90<br>Th<br>232.04             | 91<br>Pa<br>231.04           | 92<br>U<br>238.03           | 93<br>Np                   | 94<br>Pu                  | 95<br>Am                       | 96<br>Cm                    | 97<br>Bk                   | 98<br>Cf                      | 99<br>Es                    | 100<br>Fm                     | 101<br>Md                             | 102<br>No<br>(259)          |                           |                                     |

# **Covalent Bond Types**

Nonpolar Covalent – bonds between atoms of the same electronegativity.

H-H 
$$: \overset{..}{C}I - \overset{..}{C}I :$$
  $H_3C - CH_3$   $H_3C - H$ 

Polar Covalent – bonds between atoms of different electronegativity.

$$H - CI: H_{3}C - Br: H_{3}C - O:$$

Set 1 – Page 3 of 9





### How Many Bonds Can an Atom Have?

Draw an electron dot symbol. Group # = # of Valence Electron

|            | IA | IIA | IIIA | IVA | VA | VIA | VIIA |
|------------|----|-----|------|-----|----|-----|------|
| Element    | Н  | Mg  | В    | С   | N  | 0   | F    |
| Valence e- |    |     |      |     |    |     |      |
| Symbol     |    |     |      |     |    |     |      |
| # Bonds    |    |     |      |     |    |     |      |

### Lewis Structures

Show us the bonding arrangement of atoms in a molecule. All bonds and lone pairs are drawn in a Lewis structure.

#### Basic Rules:

- 1. Draw only the valence electrons
- 2. Hydrogen can have only 2 electrons (duet)
- 3. 2<sup>nd</sup> row elements can have no more than 8 electrons (octet)

#### Strategy:

- 1. Add up the total number of valence electrons for all atoms.
  - Add 1 to the electron count for a negative charge.
  - Subtract 1 from the electron count for a positive charge.
- 2. Divide the number by two to get the total number of bonds/lone pairs to use.
- 3. Arrange the atoms
  - C, N, O, S, B in the middle
  - H and halogens on the periphery (they only form 1 bond!)
- 4. Connect the atoms with bonds. Then add lone pairs until all atoms (except H) have an octet.
- 5. If any atoms still do not have an octet, use a lone pair to form a double (or triple) bond to that atom.



Example 1: C<sub>2</sub>H<sub>4</sub>Br<sub>2</sub>

Example 2: C<sub>2</sub>H<sub>6</sub>O

Example 3: C<sub>3</sub>H<sub>6</sub>

Example 4:  $CH_6N^+$ 





### **Octet Rule Exceptions**

An uncharged group IIIA element (B, Be) can have less than an octet of electrons.

**Example: BH**<sub>3</sub>

Period 3 elements and beyond can have expanded valence shells (i.e. more than an octet of electrons).

**Example: PCI<sub>5</sub>** 

| You Try 1-4                          |                                                        |                                 |  |  |  |  |  |
|--------------------------------------|--------------------------------------------------------|---------------------------------|--|--|--|--|--|
| Draw a valid Lewis structure for eac | Draw a valid Lewis structure for each of the following |                                 |  |  |  |  |  |
| C₃H₃N                                | C4H6                                                   | HCO3                            |  |  |  |  |  |
| C₄H <sub>8</sub> (acyclic)           | C <sub>4</sub> H <sub>8</sub> (ring)                   | C₂H <sub>7</sub> O <sup>+</sup> |  |  |  |  |  |



### **Lewis Structures for Larger Molecules**

As molecules become larger, counting up and distributing the valence electrons becomes increasingly cumbersome. Solution = just arrange electron dot symbols

Example 1: C<sub>5</sub>H<sub>12</sub>O

Example 2: C<sub>4</sub>H<sub>7</sub>N (cyclic structure)

Example 3: C<sub>6</sub>H<sub>11</sub>OBr (containing C=O)

Example 4: C<sub>6</sub>H<sub>11</sub>OBr (containing C=C)

#### **Constitutional Isomers**

These two Lewis structures represent constitutional isomers – molecules with the same molecular formula, but different atom connectivity.

Constitutional isomers are <u>different</u> molecules.



| You Try 1-5<br>Draw two valid Lewis structure for each of the following |                                                |                                              |  |  |  |  |
|-------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|--|--|--|--|
| C <sub>5</sub> H <sub>13</sub> N                                        | C <sub>7</sub> H <sub>14</sub> (with 5 C ring) | C <sub>5</sub> H <sub>8</sub> O <sub>2</sub> |  |  |  |  |
|                                                                         | C7H14 (acyclic)                                |                                              |  |  |  |  |

### **Formal Charge**

Formal Charge – a charge assigned to an individual atom in a molecule.

#### Formal Charge = Group # - # bonds - # lone pair electrons

Examples:



\*Pro Tip – an atom with an unusual number of bonds typically carries a formal charge!

Example:  $CH_2N_2$  – Draw the Lewis structure and assign any formal charges.

### **Charges on Carbon**

You will frequently encounter relatively unstable molecules that contain a carbon atom with a positive or negative charge.

- A charge on carbon ( + or ) will take the place of one bond.
- A "+" on carbon is a site of electron deficiency.
- A "-" carbon has a lone pair of electrons.



Organic Chemistry Prep Workshop C. Eugene Bennett Department of Chemistry





Example: Draw a Lewis structure for  $C_3H_6Br^+$  with the positive charge residing on a carbon.

#### You Try 1-6

Determine the formal charge on each of the indicated atoms.



| You Try 1-7                                            |                                                                       |  |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| Draw a valid Lewis structure for each of the charged n | Draw a valid Lewis structure for each of the charged molecules below. |  |  |  |  |
| C₄H₁1O <sup>+</sup> (+ on oxygen)                      | <b>C₄H₃O⁺</b> (+ on carbon)                                           |  |  |  |  |
| C₄H₁0N <sup>-</sup> (- on nitrogen)                    | C₄H₁0N <sup>-</sup> (- on carbon)                                     |  |  |  |  |

